import sys
def TestOneInput(data): # Our entry point
if data == b"bad":
raise RuntimeError("Badness!")
atheris.Setup(sys.argv, TestOneInput)
atheris.Fuzz()
Atheris is a native Python extension, and uses libFuzzer to provide its code coverage and input generation capabilities. The entry point passed to atheris.Setup() is wrapped in the C++ entry point that’s actually passed to libFuzzer. This wrapper will then be invoked by libFuzzer repeatedly, with its data proxied back to Python.
Python Code Coverage
Atheris is a native Python extension, and is typically compiled with libFuzzer linked in. When you initialize Atheris, it registers a tracer with CPython to collect information about Python code flow. This tracer can keep track of every line reached and every function executed.
We need to get this trace information to libFuzzer, which is responsible for generating code coverage information. There’s a problem, however: libFuzzer assumes that the amount of code is known at compile-time. The two primary code coverage mechanisms are __sanitizer_cov_pcs_init (which registers a set of program counters that might be visited) and __sanitizer_cov_8bit_counters_init (which registers an array of booleans that are to be incremented when a basic block is visited). Both of these need to know at initialization time how many program counters or basic blocks exist. But in Python, that isn’t possible, since code isn’t loaded until well after Python starts. We can’t even know it when we start the fuzzer: it’s possible to dynamically import code later, or even generate code on the fly.
Thankfully, libFuzzer supports fuzzing shared libraries loaded at runtime. Both __sanitizer_cov_pcs_init and __sanitizer_cov_8bit_counters_init are able to be safely called from a shared library in its constructor (called when the library is loaded). So, Atheris simulates loading shared libraries! When tracing is initialized, Atheris first calls those functions with an array of 8-bit counters and completely made-up program counters. Then, whenever a new Python line is reached, Atheris allocates a PC and 8-bit counter to that line; Atheris will always report that line the same way from then on. Once Atheris runs out of PCs and 8-bit counters, it simply loads a new “shared library” by calling those functions again. Of course, exponential growth is used to ensure that the number of shared libraries doesn’t become excessive.
What's Special about Python 3.8+?
In the README, we advise users to use Python 3.8+ where possible. This is because Python 3.8 added a new feature: opcode tracing. Not only can we monitor when every line is visited and every function is called, but we can actually monitor every operation that Python performs, and what arguments it uses. This allows Atheris to find its way through if statements much better.
When a COMPARE_OP opcode is encountered, indicating a boolean comparison between two values, Atheris inspects the types of the values. If the values are bytes or Unicode, Atheris is able to report the comparison to libFuzzer via __sanitizer_weak_hook_memcmp. For integer comparison, Atheris uses the appropriate function to report integer comparisons, such as __sanitizer_cov_trace_cmp8.
In recent Python versions, a Unicode string is actually represented as an array of 1-byte, 2-byte, or 4-byte characters, based on the size of the largest character in the string. The obvious solution for coverage is to:
Starting today, the Chrome Vulnerability Rewards Program is offering a new bonus for reports which demonstrate exploitability in V8, Chrome’s JavaScript engine. We have historically had many great V8 bugs reported (thank you to all of our reporters!) but we'd like to know more about the exploitability of different V8 bug classes, and what mechanisms are effective to go from an initial bug to a full exploit. That's why we're offering this additional reward for bugs that show how a V8 vulnerability could be used as part of a real world attack.
In the past, exploits had to be fully functional to be rewarded at our highest tier, high-quality report with functional exploit. Demonstration of how a bug might be exploited is one factor that the panel may use to determine that a report is high-quality, our second highest tier, but we want to encourage more of this type of analysis. This information is very useful for us when planning future mitigations, making release decisions, and fixing bugs faster. We also know it requires a bit more effort for our reporters, and that effort should be rewarded. For the time being this only applies to V8 bugs, but we’re curious to see what our reporters come up with!
The full details are available on the Chrome VRP rules page. At a high-level, we’re offering increased reward amounts, up to double, for qualifying V8 bugs.
The following table shows the updated reward amounts for reports qualifying for this new bonus. These new, higher values replace the normal reward. If a bug in V8 doesn’t fit into one of these categories, it may still qualify for an increased reward at the panel’s discretion.
So what does a report need to do to demonstrate that a bug is likely exploitable? Any V8 bug report which would have previously been rewarded at the high-quality report with functional exploit level will likely qualify with no additional effort from the reporter. By definition, these demonstrate that the issue was exploitable. V8 reports at the high-quality level may also qualify if they include evidence that the bug is exploitable as part of their analysis. See the rules page for more information about our reward levels.
The following are some examples of how a report could demonstrate that exploitation is likely, but any analysis or proof of concept will be considered by the panel:
For example reports, see issues 914736 and 1076708.
We’d like to thank all of our VRP reporters for helping us keep Chrome users safe! We look forward to seeing what you find.
-The Chrome Vulnerability Rewards Panel
One year of OpenTitan and Ibex growth on GitHub: the total number of commits grew from 2,500 to over 6,100.
One year of growth in Design Verification: from 30,000 to over 65,000 lines of testing source code. Each color represents design verification for an individual IP block.